128 research outputs found

    Electron scattering from the ground state of mercury

    Get PDF

    Convergent calculations of positron scattering from molecular hydrogen

    Get PDF
    An overview is given of the recently developed adiabatic-nuclei convergent closecoupling method for positron-molecule scattering. Fixed-nuclei single-centre calculations of positron-H2 scattering are presented. Particular emphasis is given to demonstrating convergence with increasing size of the basis and the projectile partial-wave expansion. Results are converged to within ±5%

    The Relationship Between the Parameters of the Electric and the Acoustic Signal with the Destruction of Concrete Under Cyclic Freeze-Thaw

    Get PDF
    The paper presents the research results of the effect of formation crack process on the parameters of the electric and acoustic response to impact excitation. The physical basis of mechanoelectric transformations is described. It was found that with increasing number of freeze-thaw cycles observed increase of the attenuation coefficient of energy of the electric and acoustic response by a linear relationship. Differences in the dynamics of change of attenuation coefficient of energy of the electric and acoustic response associated with differences in formation and registration of electric and acoustic response

    Determining the effect of the duration of alternating acoustic excitation on electromagnetic response parameters of the composite

    Get PDF
    The paper presents the results of the experimental investigation dealing with the effect of the alternating excitation acoustic pulse duration on the parameters of the electromagnetic emission caused by interaction of acoustic vibrations with inhomogeneities in the sample structure, piezoelectric inclusions and media interfaces of different dielectric properties. The model sample was epoxy resin with quartz sand as filler. The electrical component of the response was recorded with a capacitive transducer. The acoustic pulse was generated by piezoelectric transducer at frequencies of 57 kHz, 65 kHz, 74 kHz, 87.5 kHz and 94.5 kHz with the pulse duration varying from 10 ?s to 100 ?s. It is shown that the reduced duration of the acoustic action leads to dominance of the intrinsic frequency in the spectrum. A contribution of tensile pulses to acoustic electromagnetic transformation response generation is revealed

    Nonperturbative electron-ion scattering theory incorporating the Møller interaction

    Get PDF
    We present the first calculations that investigate the effects of both the Møller interaction and close-coupling in the calculation of electron-impact excitation cross sections. Electron scattering from U 91+ is used as a test case. The RCCC method is nonperturbative and we emphasise the restrictions and subsequent limitations associated with employing the Møller interaction in the RCCC method

    Spin asymmetries for electron-thallium scattering calculated with the relativistic convergentclose-coupling method

    Get PDF
    Spin asymmetries for elastic and inelastic scattering of electrons from thallium are presented. Thalliumis a heavy target (Z 81) and the spin asymmetries can be caused by relativistic effects (spin-orbit interactions) in addition to exchange effects

    Benchmark Calculations of Electron Impact Electronic Excitation of the Hydrogen Molecule

    Get PDF
    We present benchmark integrated and differential cross-sections for electron collisions with H2_2 using two different theoretical approaches, namely, the R-matrix and molecular convergent close-coupling (MCCC). This is similar to comparative studies conducted on electron-atom collisions for H, He and Mg. Electron impact excitation to the b 3Σu+b \ ^3\Sigma_u^+, a 3Σg+a \ ^3\Sigma_g^+, $B \ ^1\Sigma_u^+,, c \ ^3\Pi_u,, EF \ ^1\Sigma_g^+,, C \ ^1\Pi_u,, e \ ^3\Sigma_u^+,, h \ ^3\Sigma_g^+,, B' \ ^1\Sigma_u^+and and d \ ^3\Pi_uexcitedelectronicstatesareconsidered.Calculationsarepresentedinboththefixednucleiandadiabaticnucleiapproximations,wherethelatterisshownonlyforthe excited electronic states are considered. Calculations are presented in both the fixed nuclei and adiabatic nuclei approximations, where the latter is shown only for the b \ ^3\Sigma_u^+$ state. Good agreement is found for all transitions presented. Where available, we compare with existing experimental and recommended data.Comment: 21 pages, 25 figure

    Antiproton collisions with excited positronium

    Get PDF
    We present results of calculations of several processes resulting from positronium (Ps) collisions with antiprotons: antihydrogen formation, Ps breakup, and nPs-changing collisions. Calculations utilize the quantum convergent close-coupling (CCC) method and the classical trajectory Monte Carlo (CTMC) method. We identify a region of Ps principal quantum numbers nPs and Ps energies where the classical description is valid and where the CCC calculations become computationally too expensive. This allows us to present the most complete and reliable set of cross sections in a broad range of nPs and initial orbital momentum quantum numbers lPs which are necessary for experiments with antihydrogen at CERN

    Near-threshold collisional dynamics in the \u3ci\u3ee\u3csup\u3e−\u3c/sup\u3ee\u3csup\u3e+\u3c/sup\u3ep\u3c/i\u3e system

    Get PDF
    We study e+-H(n) and Ps(n)-p collisions near the three-body breakup threshold and thresholds for the charge-transfer processes.We show that classical trajectoryMonte Carlo (CTMC) simulations for the three-body breakup agree reasonably well in this energy region with quantum-mechanical convergent close-coupling (CCC) calculations even if the initial hydrogen atom or positronium atom is in the ground state. The threshold behavior of the three-body breakup cross section in e+-H(1s) and Ps(1s)-p collisions agrees with the Wannier law with Klar’s exponent and obeys the classical scaling laws, although some deviation from the Klar-Wannier behavior is observed in the CCC results. Below the threshold the agreement between CTMC and CCC disappears. In particular the CTMC method fails completely for the processes of H formation in Ps(1s)-p collisions and Ps formation in e+-H collisions well below the three-body breakup threshold. For higher initial states the CTMC results below the threshold improve substantially, in accordance with the correspondence principle. This is explained by comparing the quantum-mechanical threshold laws with the classical laws
    corecore